

Simplist

1)
$$\sqrt{50x} - \sqrt{32x} + 3\sqrt{8x} =$$
 $= \sqrt{25}\sqrt{2x} - \sqrt{16}\sqrt{2x} + 3\sqrt{4}\sqrt{2x} =$
 $= 5\sqrt{2x} - 4\sqrt{2x} + 3\cdot 2\sqrt{2x} = \sqrt{2x} + 6\sqrt{2x} = \sqrt{12x}$

2) $-2\sqrt{5}(3\sqrt{5} - 1)$

3) $(5+\sqrt{2})(5-\sqrt{2})$
 $= -6\sqrt{25} + 2\sqrt{5}$
 $= -6\cdot 5 + 2\sqrt{5}$
 $= -6\cdot 5 + 2\sqrt{5}$
 $= -30 + 2\sqrt{5}\sqrt{5}$

4) $(\sqrt{5} + 2\sqrt{2})^2$
 $= \sqrt{25} + 2\sqrt{10} + 2\sqrt{10} + 4\sqrt{4}$
 $= \sqrt{25} + 2\sqrt{10} + 2\sqrt{10} + 4\sqrt{4}$
 $= 5 - 2$
 $= 5 + 4\sqrt{10} + 4\sqrt{2}$
 $= 3\sqrt{25} + 2\sqrt{25}$
 $= 5 - 2$
 $= 3\sqrt{25} + 2\sqrt{25}$
 $= 3\sqrt{25} + 2\sqrt{25}$
 $= \sqrt{25} + 2\sqrt{10} + 2\sqrt{10} + 4\sqrt{4}$
 $= 5 - 2$
 $= 3\sqrt{25} + 2\sqrt{10} + 2\sqrt{10} + 4\sqrt{10}$

Rationalize the denominator:

1)
$$\frac{3x}{\sqrt{6x}} = \frac{3x\sqrt{6x}}{\sqrt{6x}\sqrt{6x}}$$
2) $\frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3x\sqrt{6x}}{\sqrt{36x^2}} = \frac{3x\sqrt{6x}}{\sqrt{36x^2}} = \frac{\sqrt{6x}\sqrt{6x}}{\sqrt{2}} = \frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}} =$

Pationalize the numerator

1)
$$\frac{\sqrt{10x}}{5}$$

2) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

3) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

4) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

5) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

6) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

7) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

8) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

8) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

9) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

10) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

11) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

12) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

13) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

14) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

15) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

16) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

17) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

18) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

19) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

20) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

21) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

22) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

23) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

24) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

25) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

26) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

27) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$

28) $\frac{\sqrt{3} + \sqrt{3}}{\sqrt{6}}$

29) $\frac{\sqrt{3} + \sqrt{3}}{\sqrt{6}}$

20) $\frac{\sqrt{3} + \sqrt{3}}{\sqrt{6}}$

20) $\frac{\sqrt{3} + \sqrt{3}}{\sqrt{6}}$

21) $\frac{\sqrt{3} + \sqrt{3}}{\sqrt{6}}$

22)

Solve
$$x - 2 = \sqrt{x-2}$$

$$x - 2 = \sqrt{x-2}$$

$$(x-2)^2 = (\sqrt{x-2})^2$$

$$(x-2)(x-2) = x-2$$

$$x^2 - 2x + 4 - x + 2 = 0$$

$$x^2 - 5x + 6 = 0$$

$$(x-2)(x-3) = 0$$

$$x - 2 = 0 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad x - 3 = 0$$

$$x = 2 \quad 3 - 3 = 2 = 2$$

$$2 - 0 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

$$2 - 2 = 2 \quad 3 - 1 = 2$$

Solve

$$2x + \sqrt{x-1} = 5$$
 $\sqrt{x-1} = 5 - 2x$
 $(\sqrt{x-1})^2 = (5-2x)^2$
 $x - 1 = (5-2x)(5-2x)$
 $x - 1 = (5-2x)(5-2x)$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 $x - 3 = 0$
 $x - 2 = 0$
 $x - 3 = 0$
 x

1) Write
$$\sqrt{64} - \sqrt{-16}$$
 in $0 + 6i$ form.
= $8 - \sqrt{16}\sqrt{-1} = 8 - 4i$

2) Simplify:
$$\dot{l} = (\dot{l}^{2})^{125} - \dot{l}^{184} \cdot \dot{l}$$

$$= (-1)^{125} - (\dot{l}^{2})^{125} \cdot \dot{l}$$

$$= (-1)^{125} - (-1)^{125} \cdot \dot{l}$$

$$= -1 - (-1)^{12} \cdot \dot{l} = -1 - \dot{l}$$

3) Simplisy!
$$2i(3-5i) - 4(1+3i)$$

$$= 6i - 10i^{2} - 4 - 12i$$

$$= 6i + 10 - 4 - 12i$$

$$= 6i + 10 - 4 - 12i$$

$$= 6 - 6i$$
4) Simplisy! $(3 + 4i)(-2 + 3i)$

$$= -6 + 9i - 8i + 12i^{2}$$

$$= -6 + i + 12(-1)$$

$$= -18 + i$$
5) Divide $\frac{1 + 2i}{6 + 8i} = \frac{(1 + 2i)(6 - 8i)}{(6 + 8i)(6 - 8i)} + 16$

$$= \frac{6 - 8i + 12i + 16i^{2}}{36 + 64} = \frac{22 + 4i}{100}$$

$$= \frac{22}{100} + \frac{4}{100}i$$

$$= \frac{21}{50} + \frac{4}{25}i$$

Divide
$$\frac{3+4i}{3-4i} = \frac{(3+4i)(3+4i)}{(3-4i)(3+4i)}$$

$$= \frac{9+12i+12i+16i^2}{9+16i^2} = \frac{9+24i-16}{9+16i}$$

$$= \frac{-7+24i}{25} = \frac{-7}{25} + \frac{24}{25}i$$

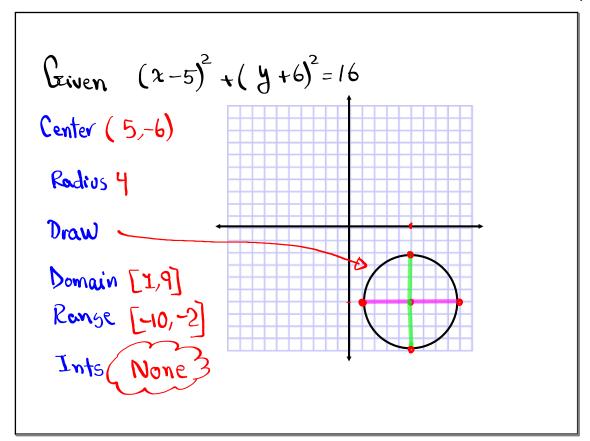
More equations:
Solve
$$5\sqrt{x} - \sqrt{10x + 15} = 0$$

 $5\sqrt{x} = \sqrt{10x + 15}$ Check
 $(5\sqrt{x})^2 = (\sqrt{10x + 15})^2$ $5\sqrt{x} - \sqrt{10x + 15} = 0$
 $25x = 10x + 15$ $5\sqrt{1} - \sqrt{101} + 15 = 0$
 $15x = 15$ $5 \cdot 1 - \sqrt{10 + 15} = 0$
 $x = 1$ $5 - \sqrt{25} = 0$
 $5 - 5 = 0$
 $5 - 5 = 0$
 $5 - 5 = 0$

Solve
$$3\sqrt{x-2} + 2 = x$$

 $3\sqrt{x-2} = x-2$
 $(3\sqrt{x-2})^2 = (2-2)^2$
 $9(x-2) = (x-2)(x-2)$
 $9x - 18 = x^2 - 2x - 2x + 4$
 $9x - 18 = x^2 - 4x + 4$
 $x^2 - 4x + 4 - 9x + 18 = 0$
 $x^2 - 13x + 22 = 0$ Check both Solutions
 $(x-2)(x-11) = 0$ in the original eqn.
 $x-2=0$ $x=11=0$
 $x=2$ $x=11$

Solve
$$x-9=\sqrt{x}+3$$
 $x-9-3=\sqrt{x}$
 $x-9-3=\sqrt{x}$
 $x^2-12x-12x+144=x$
 $x^2-24x+144-x=0$
 $(x-12)^2=(\sqrt{x})^2$
 $x^2-25x+144=0$
 $(x-16)(x-9)=0$


[16]

Therefore the content of the

Solve
$$\sqrt{x} - 4 = \sqrt{x-32}$$

 $(\sqrt{x} - 4)^2 = (\sqrt{x-32})^2$
 $(\sqrt{x} - 4)(\sqrt{x} - 4) = x - 32$
 $\sqrt{x^2} - 4\sqrt{x} - 4\sqrt{x} + 16 = x - 32$
 $\sqrt{x} = \frac{48}{5}$
 $\sqrt{x} = 6$
 $-8\sqrt{x} = -32 - 16$
 $-8\sqrt{x} = -48$
 $\sqrt{x} = 36$
Make Sure to check

Circle
$$(x-h)^2 + (y-k)^2 = r^2$$

Given $(x+4)^2 + (y-3)^2 = 9$
Center $(-4,3)$
Padius 3
Draw

Ints:
 $x-Int(-4,0)$
Y-Int None

Ellipse
$$\frac{(x-h)^2}{u^2} + \frac{(y-k)^2}{b^2} = 1$$

Center (h, k)

Ex: $\frac{(x-2)^2}{9} + \frac{(y-4)^2}{25} = 1$

Center (2, 4)

 $0 = 3$
 $0 = 3$

Center (2, 4)

Domain

Range

[-1,7]

$$\frac{(x-3)^2}{9} + \frac{y^2}{36} = 1$$
Center (3,0)
$$0=3$$

$$0(0,0)$$

$$0=3$$

$$0(0,0)$$

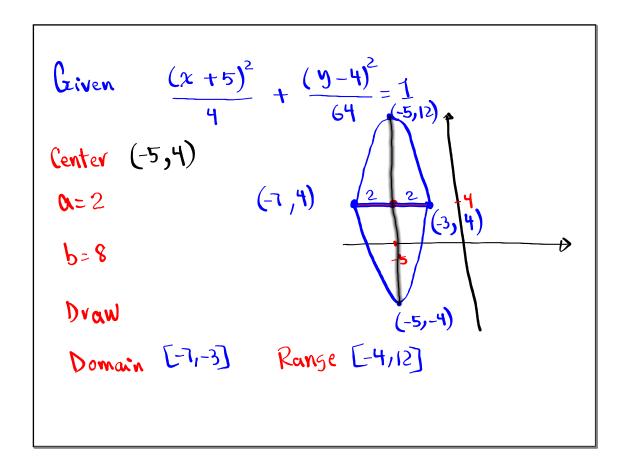
$$0(0,0)$$

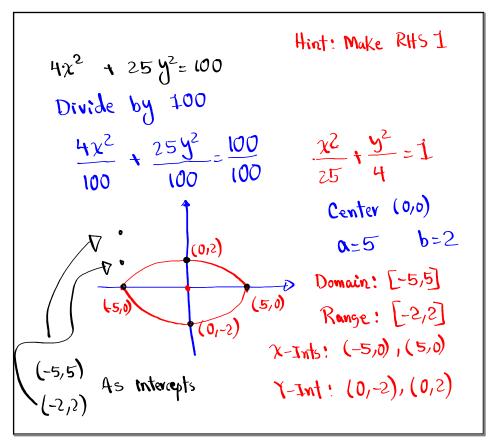
$$0(0,0)$$

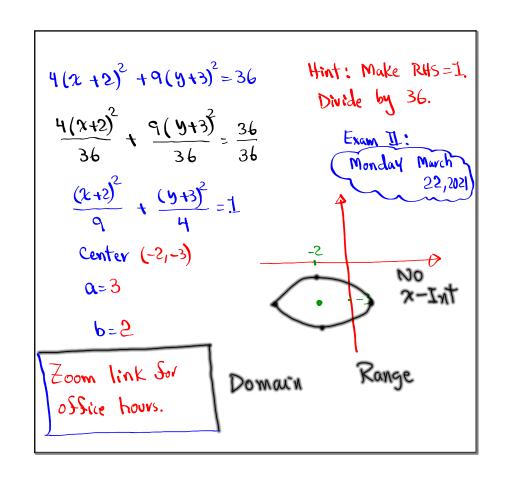
$$0(0,0)$$

$$0(0,0)$$

$$0(0,0)$$


$$0(0,0)$$


$$0(0,0)$$


$$0(0,0)$$

$$0(0,0)$$

$$0(0,0)$$

